
Functions and Subroutines Available in Betalib.DLL

LibVersion
Declare Function LibVersion Lib "betalib.dll" As Integer

Returns the version of Beta as an integer. E.g. version 2.12 would be returned at 212

SwitchTo
Declare Sub SwitchTo Lib "betalib.dll" (language As Integer)
Declare Function SwitchTo Lib "betalib.dll" (language As Integer) As Integer

Switches the current language where:
0 = off
1 = English
2 = Greek
3 = Hebrew

SwitchTo also has the feature that it will load Beta if it is not already loaded. Beta's
icon will change to indicate the current language. SwitchTo is usually used as a
subroutine (i.e. the return value is ignored) but can also be used as a function in
which case the previous language number is returned. Other possible values returned
are: -3 invalid language, -2 failed to load Beta, -1 loaded Beta

SetLast
Declare Sub SetLast Lib "betalib.dll" (LastChar As Integer)
Declare Function SetLast Lib "betalib.dll" (LastChar As Integer) As String

Beta always keeps a record of the last key to be pressed, so that when a new key is
pressed, the pair can be checked to see if they are a valid accent combination. SetLast
allows the value of the last key to be changed. This is typically set to the character
before the cursor. SetLast is usually used as a subroutine (i.e. the return value is
ignored) but can also be used as a function in which case a string is returned
containing the version number and date.

Combine
Declare Function Combine Lib "betalib.dll"(Ch As Integer, Last As Integer, Lang As
Integer) As int

This and the following two functions use Beta in what is called server mode. The
ability of Beta to intercept keystrokes is ignored, and it is used for combining and
splitting accented characters. Combine returns the result of combining characters ch
and last, in the language Lang. If the combination is invalid, then -1 is returned. The
current language setting of Beta is unaffected.

UnAccent
Declare Function UnAccent Lib "betalib.dll" (Char As Integer, Lang As Integer) As
Integer

UnAccent attempts to remove the accent from Char and return the resulting vowel
(using the rules for the language Lang). If the operation is not valid, then -1 is
returned. If the vowel had two diacritics, then accents are removed before breathings.

UnVowel
Declare Function UnVowel Lib "betalib.dll" (Char As Integer, Lang As Integer) As
Integer

UnVowel attempts to remove the accent from Char and return it (using the rules for
the language Lang) and return it. If the operation is not valid, then -1 is returned. If
the vowel had two diacritics, then accents are returned rather than breathings.

Acc2Key and Key2Acc
Declare Function Acc2Key Lib "betalib.dll" (Acc As Integer, Lang As Integer) As
Integer
Declare Function Key2Acc Lib "betalib.dll" (Key As Integer, Lang As Integer) As
Integer

These two functions convert between accent keysand their respective code points in
the character set. These are not always the same, and in some cases several keys will
produce the same accent. The keys on the numeric keypad: / * - and + are represented
by keys 130, 131, 132, 133. If the value is not an accent then -1 is returned.

Glob
Declare Function Glob Lib "betalib.dll" (Index As Integer, Value As Integer, Write as
Integer) As Integer
Provides global storage for wfw macros. An array of 11 integers is provided, accessed
by setting index from 0 to 10. If Write is 0, the value of the element is returned.
Otherwise "Value" is written into the element and the previous value is returned.

ChClass
Declare Function ChClass Lib "betalib.dll" (ch As Integer, Lang As Integer) As
Integer
Returns the class of character ch in Language Lang where:
3 = combination, 2 = accent, 1 = vowel, 0 = other.
2 is returned for combinations that are also accents.

Word for Windows Macros

Macros are set to the following keys in Beta.dot (They may of course be changed)

F10 BetaEnglish (use the ALT key instead to get to the menu bar)
F11 BetaGreek
F12 BetaHebrew
Pause BetaBackSpace
Shift/Pause BetaMagic

=======================================BetaEnglish
Switches back to the default font (using resetchar).
If the switch is from Hebrew, then an attempt is made to be intelligent about where to
leave the cursor. If Hebrew was entered with the cursor at the end of the line, then it
will now move back to the end of the line.

'Switches back to the default font

Declare Sub SwitchTo Lib "betalib.dll"(Lang As Integer)
Declare Function SetLast Lib "betalib.dll" (LastChar As Integer) As String
Declare Function Glob Lib "betalib.dll"(Ind As Integer, Valu As Integer, Wr As
Integer) As Integer

Sub MAIN
 If(LCase$(Font$()) = "hebrew") And(Glob(1, 0, 0) = 13) Then EndOfLine
 ResetChar
 SwitchTo(1)
End Sub

=======================================BetaGreek
Switches to Greek and sets the size to 12 point.

'Switches to Greek mode

Declare Sub SwitchTo Lib "betalib.dll" (lang As Integer)

Sub MAIN
FormatCharacter .Font = "Greek"
SwitchTo(2)
End Sub

=======================================BetaHebrew
Switches to Hebrew and sets the size to 12 point.
In order to prevent the program switching back out of Hebrew due to right-to-left
typing, the space character to the left of the insertion point is also converted to
Hebrew. If there was no space character, then one is inserted.

'Switches to Hebrew mode

Declare Sub SwitchTo Lib "betalib.dll" (Lang As Integer)
Declare Function Glob Lib "betalib.dll"(Ind As Integer, Valu As Integer, Wr As
Integer) As Integer

Sub MAIN
 x = Glob(1, Asc(Selection$()), 1)
 Dim Form As FormatCharacter
 GetCurValues Form

 If LCase$(Form.Font) <> "hebrew" Then
 CharLeft()
 If Selection$() = " " Then
 EditClear 1
 Else
 CharRight()
 End If
 Form.Font = "Hebrew"
 FormatCharacter Form
 Insert " "
 End If
 SwitchTo(3)

End Sub

=======================================BetaBackSpace
Intelligent Backspace.
First the macro reads the current font and sets Beta up accordingly.
If the language is Hebrew then a reverse backspace is performed.
If the language was English or Greek and the previous character was accented, then
instead of backspacing off the whole character, only the accent is removed. A second
backspace will of course remove the vowel as well.

'Intelligent Backspace

Declare Sub SetLast Lib "betalib.dll" (LastChar As Integer)
Declare Sub SwitchTo Lib "betalib.dll" (lang As Integer)
Declare Function UnAccent Lib "betalib.dll" (Char As Integer, Lang As Integer)
As Integer

Sub MAIN
OldFont$ = Font$()
Select Case LCase$(Font$())
Case "greek"
 Lang = 2
Case "hebrew"
 Lang = 3
Case Else
 Lang = 1
End Select

SwitchTo(Lang)

If Lang = 3 Then
 EditClear 1
Else

CharLeft()
Last$ = Selection$()
CharRight()
SetLast(Asc(Last$))

Vowel = UnAccent(Asc(Last$), Lang)
EditClear - 1
If Vowel <> - 1 Then
 FormatCharacter .Font = OldFont$
 Insert Chr$(Vowel)
 SetLast(Vowel)
Else
 CharLeft()
 Last$ = Selection$()
 CharRight()
 SetLast(Asc(Last$))
End If
End If
End Sub

=======================================BetaMagic
This is a very simple macro which reads the current font and previous character and
sets Beta up accordingly. To use, place the cursor at the point where it is desired to
insert text, and press the key associated with this macro

'Set Beta to language at cursor

Declare Function SetLast Lib "betalib.dll" (LastChar As Integer) As Integer
Declare Sub SwitchTo Lib "betalib.dll" (lang As Integer)

Sub MAIN
 Select Case LCase$(Font$())
 Case "greek"
 SwitchTo(2)
 Case "hebrew"
 SwitchTo(3)
 Case Else
 SwitchTo(1)
 End Select

 CharLeft()
 Last$ = Selection$()
 CharRight()

 Result = SetLast(Asc(Last$))
End Sub

=======================================BetaReverse
Select some text and run this macro to reverse the characters.
Does not work properly if the text spans more than one line.

'Reverse selected text

Sub MAIN
 Old$ = Selection$()
 Length = Len(Old$)

 New$ = ""
 For i = 1 To Length
 New$ = Mid$(Old$, i, 1) + New$
 Next i

 EditClear
 Insert New$
End Sub

=======================================BetaToGreek
Select some text and run this macro to convert from English text into Greek. Pairs of
vowel-accent characters are converted into accented characters. This macro is useful
if you need to enter Greek words but are not using Windows at the time. Later the
document may be read into WfW and the Greek words converted using this macro.

'Convert English characters to Greek, with accents

Declare Function Combine Lib "betalib.dll"(Ch As Integer, Last As Integer, Lang As
Integer) As Integer

Sub MAIN
Old$ = Selection$()
Length = Len(Old$)

New$ = ""
Last$ = " "
For i = 1 To Length
 Next$ = Mid$(Old$, i, 1)
 Result = Combine(Asc(Next$), Asc(Last$), 2)
 If Result < 0 Then
 New$ = New$ + Next$
 Last$ = Next$
 Else
 Last$ = Chr$(Result)
 New$ = Left$(New$, Len(New$) - 1) + Last$
 End If
Next i

EditClear
FormatCharacter .Font = "Greek"
Insert New$
End Sub

=======================================BetaFromGreek
Select some text and run this macro to convert from Greek text to English. The
accents are expanded out to the keys used originally to create the Greek text. This
macro does the reverse of BetaToGreek. It is useful if a document needs to be
converted to contain only ASCII characters, for example for email.

'Convert Greek characters to English, with accents

Declare Function UnAccent Lib "betalib.dll" (Char As Integer, Lang As Integer)
As Integer
Declare Function UnVowel Lib "betalib.dll" (Char As Integer, Lang As Integer) As
Integer

Sub MAIN
Old$ = Selection$()
Length = Len(Old$)

New$ = ""
For i = 1 To Length
 Next$ = Mid$(Old$, i, 1)
 Vowel = UnAccent(Asc(Next$), 2)
 If Vowel < 0 Then
 New$ = New$ + Next$
 Else
 Acc$ = Chr$(UnVowel(Asc(Next$), 2))
 Vowel2 = UnAccent(Vowel, 2)
 If Vowel2 < 0 Then
 New$ = New$ + Chr$(Vowel) + Acc$
 Else
 Acc2$ = Chr$(UnVowel(Vowel, 2))
 New$ = New$ + Chr$(Vowel2) + Acc2$ + Acc$
 End If
 End If
Next i

EditClear
ResetChar
Insert New$
End Sub

=======================================Overstrike
A macro for use in Hebrew. Type a consonant followed by one or more vowels /
diacritics, and press Overstrike. The macro will replace character pairs with

combinations where they are available, otherwise it will overstrike the characters.

'Overstrike Hebrew consontant with diacritics

Declare Function Combine Lib "betalib.dll"(Ch As Integer, Last As Integer, Lang As
Integer) As Integer
Declare Function ChClass Lib "betalib.dll"(ch As Integer, Lang As Integer) As
Integer
Sub MAIN

MoveCount = 0
NewStr$ = ""
c$ = Selection$()
While ChClass(Asc(c$), 3) = 2
 CharRight 1
 MoveCount = MoveCount + 1
 Result = Combine(Asc(c$), Asc(Selection$()), 3)
 If Result > - 1 Then
 c$ = Chr$(Result)
 Else
 NewStr$ = NewStr$ + c$
 c$ = Selection$()
 End If
Wend
NewStr$ = NewStr$ + c$

If c$ = Chr$(21) Then
 MsgBox "Character already overstruck"
 Goto abort
End If

Print NewStr$
CharRight 1
CharLeft MoveCount + 1, 1
EditClear

Lenstr = Len(NewStr$)
If lenstr > 1 Then
 newchars$ = "eq \O("
 For i = 1 To Lenstr
 If(Mid$(NewStr$, i, 1) = "\") Or(Mid$(NewStr$, i, 1) = ",") Then newchars$ =
newchars$ + "\"
 newchars$ = newchars$ + Mid$(NewStr$, i, 1)
 If i <> Lenstr Then newchars$ = newchars$ + ","
 Next i
 InsertField .Field = newchars$ + ")"
Else
 Insert NewStr$
End If

CharLeft 1
abort:
End Sub

=======================================BetaUnderdot
A macro for use when typing transliterated Hebrew. The character to the left of the
cursor will have a dot placed under it.

'Place dot under character (used for transliterated Hebrew)

Sub MAIN
CharLeft 1, 1
c$ = Selection$()
If c$ < " " Then
 MsgBox "Not a Valid Character to Underdot"
Else
 EditClear
 InsertField .Field = "eq \O(" + c$ + ",\s\do4(.))"
End If
End Sub

